
Microeconomic Theory II
PS2 - Solution Topics

1)
Each subgame has two Nash equilibria in pure strategies: (S; S), (R;R). Therefore, there are

4 SPE in pure strategies. To describe these, let us �rst name the strategies for players. Player 1
has 8 strategies: GSS, GSR, GRS, GRR, NSS, NSR, NRS, and NRR, where the �rst letter
indicates whether he gives gift (G) or not (N), and the second and third letters indicate the
actions he takes in case of gift and no gift, respectively. Similarly, player 2 has four strategies:
SS, SR, RS, and RR. The subgame perfect equilibria are: (NSS; SS), (NRR;RR), (NRS;RS),
and (GSR;SR).

2) In the second stage of the game, it is clear that each type will always play the static best
response: a = 2 type will �ght and a = �1 type will accommodate. Then for the �rst stage,
with � = 0:9, the entrant will always enter since

EU(Enter) = 2� � 1 = 0:8 > EU(out) = 0;

and a = 2 type �ghts and a = �1 type accommodates.
The PBE is f(F;A;F;A); (E;O;E)g - here we are denoting the strategy for the incumbent as

(t11; t21; t12; t22), where tij indicates the action taken by type i in the stage j, and for the entrant
as (a1; a21; a22), where a1 refers to the �rst information set at t = 1, and the other two refer to
the information sets at t = 2. Player 2's beliefs are updated such that we have �(a = �1jA) = 1
at a22, and �(a = 2jF ) = 1 at a21.

3)
(a) To begin with, let's �nd the subgame perfect Nash Equilibrium of the stage game. We

can do this by backward induction. The long-run �rm, observing the short-run �rms's quantity
xt, chooses its quantity yt to maximize its pro�t

�Lt = yt (1� (xt + yt)) :

Solving the �rst order condition, the optimum is determined as

y�t (x
�
t ) =

1� x�t
2

:

The short-run �rm chooses its quantity xt to maximize its pro�t

�St = xt (1� (xt + yt))

knowing that if it chooses xt, the long-run �rm reacts with

y�t =
1� xt
2

:

Therefore, the short-run �rm's objective function can be written as a function of xt;

�St = xt

�
1�

�
xt +

1� xt
2

��
:
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Solving the �rst order condition, the optimum is x�t = 1=2: Therefore, the subgame perfect
Nash Equilibrium of the stage game is

x�t =
1

2
; y�t =

1� 1
2

2
=
1

4
:

Now let's solve for the subgame perfect Nash Equilibrium of the �nitely repeated game. Since
it is a �nite horizon game with perfect information, we can use backward induction. At the last
period, t = T , the players don't care about the future, and they concern only about the payo�s of
that period. Therefore they must play the subgame perfect Nash equilibrium of the stage game,
regardless of what happened in the past. At time t = T � 1, players know that their actions
today don't a�ect tomorrow's outcome, so they will concern only about the payo� of that period.
Therefore, they again must play the subgame perfect Nash equilibrium of the stage game. We
can repeat this argument until we reach the �rst period. Therefore, the subgame perfect Nash
equilibrium of the �nitely repeated game is

x�t =
1

2
; y�t =

1

4
for all t,

regardless of history.

(b)
Consider the following trigger strategy.
Long-run �rm
1) Start with playing the following strategy (*):

yt (xt) =

�
1=2
1� xt

if xt � 1=2
if xt > 1=2

Keep playing this strategy as long as it has not deviated from it.
2) Play yt (xt) =

1�xt
2 if it has deviated from (*) at least once.

Short-run �rms
1) Play

xt =

�
1=4
1=2

if the long-run �rm has never deviated from (*) before
if the long-run �rm has deviated from (*) at least once.

To see this is actually a subgame perfect Nash equilibrium, let's check incentive to deviate.
First, consider the long-run �rm's incentive when it has never deviated from (*) before.

Case 1: xt � 1=2
If it follows the strategy and chooses yt = 1=2, the present period pro�t of the long-run �rm

is 1
2

�
1�

�
1
2 + xt

��
.

Starting from the next period, the outcome will be xt = 1=4 and yt = 1=2 every period, and
the long-run �rm's per period pro�t is 1=8, and therefore the present discounted value of the
pro�t stream is 1

2

�
1�

�
1
2 + xt

��
+ �

8(1��) .

If it is to deviate, the best it can do today is play yt =
1�xt
2 and get the payo� of (1�xt)

2

4 .
However, starting from next period the outcome will be xt = 1=2 and yt = 1=4 and the

long-run �rm's per period pro�t is 1=16. Therefore the present discounted value of the pro�t

stream is (1�xt)2
4 + �

16(1��) .
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If � = 0:99,
1

2

�
1�

�
1

2
+ xt

��
+

�

8 (1� �) >
(1� xt)2

4
+

�

16 (1� �) ;

and therefore it is better to follow the equilibrium strategy than to deviate.

Case 2: xt > 1=2
If it follows the strategy, then pt = 0 , and today's payo� is 0, and the outcome will be

xt = 1=4 and yt = 1=2 every period, starting the next period. The long-run �rm's per period
pro�t is 1=8, and therefore the present discounted value of the pro�t sequence is �

8(1��) .

If it is to deviate, the best it can do today is play yt =
1�xt
2 , and get the payo� of (1�xt)

2

4 :
However, starting from next period, the outcome will be xt = 1=2 and yt = 1=4, and the long-run
�rm's per period pro�t is 1=16. Therefore the present discounted value of the pro�t stream is
(1�xt)2

4 + �
16(1��) :

This value is the largest when xt = 1=2, and is equal to
1
16 +

�
16(1��) : If � = 0:99, it is better

to follow the equilibrium strategy path than to deviate.

Second, consider the long-run �rm's incentive when it has deviated from (*) before.
According to the strategy pro�le, future outcomes don't depend on today's behavior. There-

fore the long-run �rm cares only about its payo� today. Actually, by following the strategy, it is
taking best response to the short-run �rm.
Finally, consider the short-run �rm's incentives. Since they never care about future payo�,

it must be playing a best response to the long-run �rm's strategy, which is actually true.

c)
In the equilibrium we saw in part (b), the per period pro�ts on the equilibrium path were

1=8 for the long-run �rm and 1=16 for the short-run �rms. If there is a subgame perfect Nash
equilibrium where xt = yt = 1=4 on the equilibrium path, then the per period pro�ts on the
equilibrium path are 1=8 for the long-run �rm and 1=8 for the short-run �rm.
Construct the following trigger strategy, which is di�erent from part (b) only in (*) where

xt = 1=4:

Long-run �rm
1) Start with playing the following strategy (*):

yt (xt) =

8<: 1=4
1=2
1=4

if xt = 1=4
xt � 1=2 and xt 6= 1=4

if xt > 1=2

Keep playing this strategy as long as it has not deviated from it.
2) Play y�t (xt) =

1�xt
2 , if it has deviated from (*) at least once.

Short-run �rms
1) Play xt = 1=4 if the long-run �rm has not deviated from (*) before.
2) Play xt = 1=2 if the long-run �rm has deviated from (*) at least once.

The incentive of the long-run �rm when it is supposed to play (*) and xt = 1=4 is satis�ed
because it gets current payo� of 1=8, which is the same as part (b), and what it can get by
deviating is the same as part (b). Thus, the incentive problem of the long-run �rm is the same
as in part (b).
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The incentive of the short-run �rms is also satis�ed because the payo� from following the
strategy is larger than in part (b), and the payo� when deviating is the same as in part (b).

4) We construct a Bayesian Nash equilibrium (x�1; x
�
2), which will be in the form of x�i (�i) =

a+ b
p
�i. The expected payo� of i from investment xi is

U (xi; �i) = E
�
�ixix

�
j � x3i

�
= �ixiE

�
x�j
�
� x3i

and x�i (�i) satis�es the �rst order condition

@U (xi; �i)

@xi
= 0() �iE

�
x�j
�
� 3x2i = 0() x�i =

s
�iE

�
x�j
�

3
:

That is, a = 0, and the equilibrium is in the form of x�i (�i) = b
p
�i where

b =

s
E
�
x�j
�

3
:

But x�j = b
p
�j ; hence

E
�
x�j
�
= E

h
b
p
�j

i
= bE

hp
�j

i
= 1 2b

3
:

Substituting this in the previous equation we obtain

b2 =
E
�
x�j
�

3
=

2b
3

3
() b =

2

9
:

In summary,

x�i =
2

9

p
�i.

5) There is a unique perfect Bayesian Nash equilibrium in this game. Clearly, 1 must exit
at the beginning and 2 has to go in on the right branch as he does not have any choice. The
behavior at the nodes in the bottom layer is given by sequential rationality as in the �gure
below. Write � for the probability that 2 goes in in the center branch, � for the probability that
3 goes right, and � for the probability 3 assigns to the center branch. In equilibrium, 3 must
mix (i.e., � 2 (0; 1)). Because if 3 goes left, then 2 must exit at the center branch, hence 3 must
assign probability 1 to the node at the right (i.e., � = 0), and hence she should play right { a
contradiction. Similarly, if 3 plays right, then 2 must go in at the center branch. Given his prior
beliefs (:4 and :1), � = 4=5, hence 3 must play left { a contradiction again. In order 3 to mix,
she must be indi�erent, i.e.,

1 = 0�+ 3 (1� �) ,

hence,
� = 2=3.

1E
�p

�j
�
=

1R
0

p
�j :1d�j =

"
�
3=2
j

3=2

#1
0

= 2
3
since �j is uniformly distributed on the unit interval.
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By the Bayes' rule, we must have

� =
0:4�

0:4�+ 0:1
=
2

3
() � =

1

2
.

That is player 2 must mix on the center branch, and hence she must be indi�erent,

1 = 2� () � = 1=2:

The equilibrium is depicted in the following �gure.

6)
(a) � = x1 + x2 is the \common value". The crucial thing here is that each player knows his

signal or type xi but not the opponent's; however, as soon as he wins the auction, he discovers
something disappointing about the other player's valuation: that it wasn't high enough for him
to bid more and win! Each player must foresee this and incorporate it into his problem of de�ning
his bid.
The ex-ante payo� of bidder: with type xi if he wins is not E(�)� bi; but E(�jbi > bj)� bi =

xi + E(xj jbi > bj)� bi (1)
Now, if agent j is using a linear bid (that can only be linear in the information available to

him - namely xj and not �), then bj = aj + cjxj and we can re-write (1) as:

xi + E(xj jbi > aj + cjxj)� bi = xi + E(xj <
bi � aj
cj

)� bi = xi +
bi � aj
2cj

� bi

As E(xj jbi > aj + cjxj) = bi�aj
2cj

:

The probability of winning is P (bi > bj) = P (bi > aj + cjxj) = P (xj <
bi�aj
cj

) =
bi�aj
cj

:

If he loses, he gets 0 and a tie happens with probability 0, so bidder i sets bi so as to:

max
bi

bi � aj
cj

�
xi +

bi � aj
2cj

� bi
�

Notice that this equals P (bi > bj)E(� � bijbi > bj):
The FOC yields:
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1

cj

�
xi +

bi � aj
2cj

� bi
�
+

�
1

2cj
� 1
�
bi � aj
cj

= 0,

, bi =
cj

2cj � 1
xi + aj

cj � 1
2cj � 1

So, we can write bi = ai + cixi; where ai = aj
cj�1
2cj�1 and ci =

cj
2cj�1 : But since the problem

is symmetric, we have ci = cj = 1 and ai = aj = 0: Therefore, the equilibrium strategies are
bi = xi and bj = xj :

(b) Without assuming linearity, we can simply assume that the bid is strictly increasing and
di�erentiable - bj = b

�(xj) where b
�0 > 0:

We follow the same steps as in a). The ex-ante payo� of bidder i with type xi if he wins is:
xi + E(xj jbi > bj)� bi = xi + E(xj jbi > b�(xj))� bi (2)
Since b�(:) is strictly increasing, let �(:) be the inverse of b�(:): We can re-write (2) as:

xi + E(xj jxj < �(bi))| {z }
�(bi)=2

� bi

The probability of winning is P (bi > bj) = P (bi > b
�(xj)) = P (xj < �(bi)) = �(bi): So, the

bidder solves:

max
bi
�(bi)

�
xi +

�(bi)

2
� bi

�
The FOC yields:

�0(bi)

�
xi +

�(bi)

2
� bi

�
+

�
�0(bi)

2
� 1
�
�(bi) = 0,

, �0xi + ��
0 � �0bi � � = 0

But xi = �(bi) by symmetry and 2��
0��0bi�� = 0 which is a di�erential equation for which

one solution is �(b) = kb+ c; with k determined by

2(kb+ c)k � kb� kb� c = 0,
, 2k2b+ 2kc� 2kb� c = 0,
, 2kb(k � 1) + c(2k � 1) = 0)

k = 1 and c = 0 and �(b) = b

Therefore, b�(xi) = xi:
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